Markov-type inequality in the L_2 -norm induced by the Gegenbauer weight

Geno Nikolov^{*}, Alexei Shadrin[†] *Faculty of Mathematics and Informatics Sofia University "St. Kliment Ohridski" geno@fmi.uni-sofia.bg.

[†]Department of Applied Mathematics and Theoretical Physics Cambridge University, United Kingdom

Abstract

Let $w_{\lambda}(t) := (1 - t^2)^{\lambda - 1/2}$, where $\lambda > -\frac{1}{2}$, be the Gegenbauer weight function, let $\|\cdot\|_{w_{\lambda}}$ be the associated L_2 -norm,

$$||f||_{w_{\lambda}} = \left\{ \int_{-1}^{1} |f(x)|^2 w_{\lambda}(x) \, dx \right\}^{1/2} \,,$$

and denote by \mathcal{P}_n the space of algebraic polynomials of degree $\leq n$. We study the best constant $c_n(\lambda)$ in the Markov inequality in this norm

$$||p'_n||_{w_{\lambda}} \le c_n(\lambda) ||p_n||_{w_{\lambda}}, \qquad p_n \in \mathcal{P}_n,$$

namely the constant

$$c_n(\lambda) := \sup_{p_n \in \mathcal{P}_n} \frac{\|p'_n\|_{w_\lambda}}{\|p_n\|_{w_\lambda}}$$

We derive explicit lower and upper bounds for the best Markov constant $c_n(\lambda)$,

$$\underline{c}_n(\lambda) \le c_n(\lambda) \le \overline{c}_n(\lambda)$$

with a small ratio $\frac{\overline{c}_n(\lambda)}{\underline{c}_n(\lambda)}$, which are valid for all $n \in \mathbb{N}$ and $\lambda > -1/2$.

REFERENCES

[1] G. Nikolov, A. Shadrin, On the Markov inequality in the L_2 -norm with the Gegenbauer weight, Constr. Approx., to appear.